
www.manaraa.com

β-Arrestin2 oligomers impair the clearance of
pathological tau and increase tau aggregates
Jung-A A. Wooa,b,1, Tian Liua,c, Cenxiao C. Fanga,c, Maria A. Castañoa, Teresa Keea,c, Ksenia Yrigoina, Yan Yana,c,
Sara Cazzaroa,c, Jenet Matlacka,c, Xinming Wanga, Xingyu Zhaoa,c, David E. Kanga,c,d,1, and Stephen B. Liggetta,b,e,1

aUniversity of South Florida Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613; bDepartment of
Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613; cDepartment of Molecular Medicine,
Morsani College of Medicine, University of South Florida, Tampa, FL 33613; dResearch Division, James A. Haley Veteran’s Administration Hospital, Tampa, FL
33612; and eDepartment of Medical Engineering, University of South Florida, Tampa, FL 33613

Edited by Robert J. Lefkowitz, Howard Hughes Medical Institute and Duke University Medical Center, Durham, NC, and approved January 21, 2020 (received
for review October 2, 2019)

Multiple G protein-coupled receptors (GPCRs) are targets in the
treatment of dementia, and the arrestins are common to their
signaling. β-Arrestin2 was significantly increased in brains of pa-
tients with frontotemporal lobar degeneration (FTLD-tau), a disease
second to Alzheimer’s as a cause of dementia. Genetic loss and
overexpression experiments using genetically encoded reporters
and defined mutant constructs in vitro, and in cell lines, primary
neurons, and tau P301S mice crossed with β-arrestin2−/− mice, show
that β-arrestin2 stabilizes pathogenic tau and promotes tau aggre-
gation. Cell and mouse models of FTLD showed this to be maladap-
tive, fueling a positive feedback cycle of enhanced neuronal tau via
non-GPCR mechanisms. Genetic ablation of β-arrestin2 markedly ab-
lates tau pathology and rescues synaptic plasticity defects in tau
P301S transgenic mice. Atomic force microscopy and cellular studies
revealed that oligomerized, but not monomeric, β-arrestin2 in-
creases tau by inhibiting self-interaction of the autophagy cargo
receptor p62/SQSTM1, impeding p62 autophagy flux. Hence, reduc-
tion of oligomerized β-arrestin2 with virus encoding β-arrestin2 mu-
tants acting as dominant-negatives markedly reduces tau-laden
neurofibrillary tangles in FTLD mice in vivo. Reducing β-arrestin2
oligomeric status represents a new strategy to alleviate tau pathol-
ogy in FTLD and related tauopathies.
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Second in prevalence only to Alzheimer’s disease (AD) as the
cause of early onset nonvascular dementia, frontotemporal

lobar degeneration (FTLD) is an aggressive neurodegenerative
disease whose pathologic basis is ill defined (1). Like AD, the
most common form of FTLD (FTLD-tau) displays an accumu-
lation of hyperphosphorylated tau within inclusion bodies of
neurons of the affected regions, including the cortex and tem-
poral lobes and some subcortical neurons (2). In contrast to AD,
where amyloid β (Αβ) is an integral part of the tangle, there is no
accumulation of Aβ in FTLD neurons, but rather in most forms,
a marked accumulation of tau is observed. Interestingly, even in
AD, tau appears to be indispensable for Aβ to transduce neu-
rotoxic signals (3, 4). Indeed, tauopathy correlates significantly
better than Aβ with cognitive deficits in AD (5–7). This patho-
genic role for tau in AD, and several reported observations re-
garding G protein-coupled receptors (GPCRs) in the pathology
and treatment of AD, has prompted us to consider how GPCRs
and associated proteins integrate into the tauopathy of FTLD,
where unique therapeutic strategies are lacking to date.
GPCRs initiate a wide range of physiological processes, and

several GPCRs have been shown to potentially play roles in AD
pathogenesis (8–15). Genetic and pharmacological studies indicate
that neuronal expression and/or activation of several GPCRs with
diverse structures, endogenous agonists, and cell signaling effects
positively contribute to Aβ and/or tau pathogenesis in animal
models (8–15). However, it is not clear how this heterologous array
of GPCRs can impinge on Aβ and tau pathogenesis and neuro-
degeneration in AD. One potential commonality among these

receptors is their interaction with arrestins. Upon agonist binding
(16), most GPCRs become phosphorylated by G protein-coupled
receptor kinases, and the phosphorylated receptors are substrates
for the binding of arrestins. These proteins physically interdict
between receptor and G protein, partially uncoupling the activated
receptor from its functional transducer. This phenomenon is
thought to be a mechanism to regulate function within the complex
signaling environment of the cell. Agonist activation also induces
receptor internalization and promotes additional signals, which
have been shown to be due to arrestins acting as multifunctional
adapter and scaffolding proteins. Arrestins constitute a small
family of four homologous proteins, known as Arrestin1, Arrestin2
(β-arrestin1), Arrestin3 (β-arrestin2), and Arrestin4 (16–18). While
Arrestin1 and Arrestin4 bind to only a few receptors (rhodopsin
and the color opsins) and are expressed in specific cell types (19,
20), β-arrestin1 and β-arrestin2 are ubiquitously expressed and
show the highest levels of expression in the brain and spleen.
β-Arrestins exist in three distinct states in cells: 1) free unbound, 2)
GPCR bound, and 3) microtubule bound, each with the potential
for different signaling capabilities (21–26). Previous studies have
shown that β-arrestin2 is increased in AD brains (27). In addition,
genetic studies have demonstrated that endogenous β-arrestin2
promotes Aβ production and deposition by physically interacting
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with the Aph-1 subunit of the γ-secretase complex (27) linking
β-arrestin2 to Aβ pathogenesis (27). Prior to the current work,
however, it was not known whether, or how, β-arrestin2 patho-
genically impinges on tauopathy and neurodegeneration in AD, or
in FTLD where there is no accumulation of Aβ.

Results
Increased β-Arrestin2 Levels in Brains of FTLD-Tau Patients and Tau
P301S Transgenic Mice. We compared the expression of β-arrestin2
from the frontal cortex of aged-matched control subjects (n = 12)
and patients with FTLD and tauopathy (FTLD-tau, n = 10).
Western blotting for RIPA soluble β-arrestin2 demonstrated an
∼1.8-fold increase in β-arrestin2 protein in the frontal cortex of
FTLD-tau patients compared to healthy controls (Fig. 1 A and B).
Likewise, qRT-PCR showed a similar increase in β-arrestin2 mRNA
in FTLD-tau brain samples compared to the non-FTLD-tau con-
trols (Fig. 1C). We also confirmed that RIPA insoluble β-arrestin2
protein levels positively correlate with tau levels in FTLD-tau brains
(Fig. 1D and SI Appendix, Fig. S1). Next, we assessed the expression
of β-arrestin2 in the tau P301S transgenic mouse. This mouse
overexpresses the disease-associated P301S tau in neurons and dis-
plays FTLD-like pathophysiology and behavior without Aβ accu-
mulation (28). β-Arrestin2 protein and mRNA were significantly
elevated in tau P301S transgenic mouse brains compared to non-
transgenic littermates (Fig. 1 E–G). To confirm these results in a
different way, cultured days in vitro (DIV)21 primary hippocampal
neurons derived from tau P301S and wild-type (WT) littermates
were stained for β-arrestin2 (Fig. 1H). Quantification of β-arrestin2
confirmed in the cell type of interest what was observed in the ho-
mogeneous brain tissue (Fig. 1I).

β-Arrestin2 Increases Tau Stability. We next determined whether
the observed increase in β-arrestin2 in these tauopathy models
can act to regulate tau in a negative (compensatory) or positive
(disease enhancing) manner. In HeLa cells stably expressing tau
(V5-tagged 4R0N tau, termed HeLa-V5-tau cells), transfected
β-arrestin2 significantly increased total tau and phosphorylated tau

(Fig. 2 A–D), and β-arrestin2 siRNA transfection significantly re-
duced total tau and phospho-tau (Fig. 2 E and F). Similarly, in-
fection of tau P301S cortical primary neurons with β-arrestin2
packaged adenovirus also increased total tau and phospho-tau in-
tensities compared to the control adenovirus condition as assessed
by immunocytochemical imaging (Fig. 2 G–I) and immunoblotting
(SI Appendix, Fig. S2 A and B). Conversely, lentivirus-mediated
shRNA knockdown of β-arrestin2 reduced total tau as assessed
by imaging (Fig. 2 J and K) and immunoblotting (SI Appendix, Fig.
S2 C and D). No significant differences in tau mRNA levels were
seen by β-arrestin2 overexpression or knockdown (SI Appendix,
Fig. S2 E and F). The aforementioned studies were conducted in
the absence of any GPCR agonists, which focused our attention on
nonreceptor mechanisms by which β-arrestin2 interacts with tau or
other partners to evoke the phenotype. We then examined tau
turnover as a potential mechanism by which increased β-arrestin2
increases the effective levels of tau at steady state. Treatment of
HeLa-V5-tau cells with cycloheximide to block protein translation
showed that transfected β-arrestin2 significantly delays the turnover
of tau (Fig. 2 L and M), consistent with β-arrestin2 stabilizing tau
via scaffolding protein:protein interactions.

Genetic Reduction of β-Arrestin2 Mitigates Tauopathy and Synaptic
Dysfunction in Tau P301S Mice. The above data suggested that in-
creased tau increases β-arrestin2, which in turn acts to further po-
tentiate tau-mediated events by stabilizing the protein, thus
indicative of a vicious positive pathogenic feedback cycle. This
suggested a therapeutic attack point, should mice display the
expected pathologic phenotypes when β-arrestin2 is genetically
reduced. Thus, to assess the physiological relevance of endogenous
β-arrestin2 in tau regulation in vivo, we crossed the tau P301S
transgenic mice to β-arrestin2−/− (Arrb2−/−) mice.We first fractionated
(29) 7-mo-old tau P301S, tau P301S/Arrb2+/−, and tau P301S/
Arrb2−/− littermate mouse brains. Sarkosyl-insoluble tau was clearly
decreased in tau P301S/Arrb2+/− and tau P301S/Arrb2−/− compared to
tau P301S littermates. However, there was no difference in the
sarkosyl-soluble tau (Fig. 3 A–C). Immunohistochemistry for
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Fig. 1. β-Arrestin2 is increased in brains of FTLD-tau patients and tau P301S transgenic mice. (A) Representative immunoblots of β-arrestin2 from the frontal
cortex of 12 age-matched unaffected controls and 10 FTLD-tau patients. The numbers above the lanes are sample numbers corresponding to the subjects,
with some samples repeated on the second gel. (B and C) Quantification of β-arrestin2 protein and mRNA levels in the frontal cortex of FTLD-tau patients
compared with unaffected controls (n = 12 healthy control, n = 10 FTLD-tau, **P < 0.005, *P < 0.05). (D) Correlation of insoluble tau and β-arrestin2 ex-
pression in FTLD-tau patients (n = 10 FTLD-tau). Each data point represents mean results from duplicate determinations from a given subject. The blots are
shown in SI Appendix, Fig. S1. (E) Representative immunoblots of β-arrestin2 in the mouse cortex from 7-mo-old WT and tau P301S transgenic littermates. (F
and G) Quantification of β-arrestin2 protein and mRNA levels in the cortex of WT and tau P301S transgenic littermates (n = 5 WT, n = 4 tau P301S, **P < 0.005,
*P < 0.05). (H) Representative staining of β-arrestin2 (magenta) and total tau (green) using DIV21 hippocampal primary neurons derived from WT and tau
P301S littermates. (Scale bar: 10 μm.) (I) Quantification of β-arrestin2 immunoreactivity (n = 3 independent experiments, *P < 0.05).
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phospho-tau (pS199/pS202) was performed with cortex (Fig. 3 D
and E) and hippocampus (Fig. 3 D and F) of 7-mo-old WT, tau
P301S, tau P301S/Arrb2+/−, and tau P301S/Arrb2−/− littermates. We
found that brain sections from tau P301S/Arrb2+/− and tau P301S/
Arrb2−/− mice exhibited ∼50% less phospho-tau immunoreactivity
compared to those from tau P301S mice (Fig. 3 D–F). We also
confirmed that knockout of β-arrestin2 decreases sarkosyl-insoluble
tau in cultured primary neurons derived from brains of the tau
P301S/Arrb2−/− mice compared to those from tau P301S mice (SI
Appendix, Fig. S3 A–C).
To determine functional changes in synaptic plasticity imposed

by the genetic decrease in expressed β-arrestin2, we carried out
electrophysiological studies on brain slices. Input-output (IO)
analysis indicated no significant differences among WT, tau P301S,
tau P301S/Arrb2+/−, and tau P301S/Arrb2−/− littermate slices (Fig.
3G), as expected from previous electrophysiological studies of tau
P301S mice (28–30). In paired pulse facilitation (PPF) studies, we
observed significant field excitatory postsynaptic potential (fEPSP)
slope reductions in tau P301S slices in all interstimulus intervals
(except 260 to 280 ms) compared to WT slices (Fig. 3H), with tau
P301S/Arrb2+/− as well as tau P301S/Arrb2−/− slices being not ap-
preciably different from tau P301S slices (Fig. 3H). In contrast, in
long-term potentiation (LTP) recordings using theta burst stimu-
lation, tau P301S slices were markedly impaired in the induction
and maintenance of LTP compared to WT slices as expected (29).
However, LTP in tau P301S/Arrb2+/− and tau P301S/Arrb2−/− slices
was restored to levels virtually identical to those of WT slices (Fig.
3I). These results suggest that the cycle can be broken at the
β-arrestin2 interface. As further evidence for a salutary effect of
lowering β-arrestin2 and consistent with the LTP data, silencing of
β-arrestin2 by shRNA lentivirus significantly rescued the depletion
of synaptophysin (presynaptic; SI Appendix, Fig. S3 D and E) and
drebrin (postsynaptic; SI Appendix, Fig. S3 D and F) compared

to tau P301S primary neurons transduced with control shRNA
lentivirus.

β-Arrestin2 Oligomerization Is Required for Tau Stability. It has been
shown that β-arrestin2 can be found as an oligomer in multiple
cell types (31, 32). Inositol hexakisphosphate (IP6) enhances this
self-association of β-arrestin2 by bridging neighboring molecules
in a head-to-tail configuration. Positively charged arginine and
lysine residues within the N terminus and C terminus of
β-arrestin2 were found to be critical for both IP6 binding and
oligomerization. Given the physical overlap of IP6 and GPCR
binding sites, β-arrestin2 binding to an activated GPCR and to
IP6 is mutually exclusive, indicating that in the oligomeric form
β-arrestin2 may serve other purposes apart from GPCR binding
(33–43).
We tested the hypothesis that β-arrestin2 self-oligomerization

affects tau stability and tauopathy by using a β-arrestin2 N-
terminal domain mutant (K158A, K161A, and R162A, referred
to as β-arrestin2ΔIP6N), and a C-terminal domain mutant (K232A,
R234A, K252A, K326A, and K328A, referred to as β-arrestin2
ΔIP6C); these mutants are incapable of forming oligomers as de-
termined by BRET and coimmunoprecipitation assays (31, 32), but
nevertheless bind to activated GPCRs with WT affinity (44).
When DIV18 tau P301S cortical primary neurons were

transduced with either β-arrestin2 ΔIP6C or ΔIP6N lentivirus, a
∼50% reduction in tau compared to control was evident (Fig. 4 A
and B), which represents a key finding relevant to both mecha-
nism of action and potential therapeutic strategies. Consistent
with these findings, YFP-β-arrestin2 ΔIP6C and YFP-β-arrestin2
ΔIP6N expression in HeLa-V5-tau cells also caused significant
reductions in tau as assessed by immunocytochemistry (SI Ap-
pendix, Fig. S4A). To show that these mutants act as dominant
negatives for oligomerization, we performed proximity ligation
assays (PLAs) examining the interaction between β-arrestin2-flag
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and β-arrestin2-myc in presence of control vector, or β-arrestin2
ΔIP6C or β-arrestin2 ΔIP6N. Indeed, β-arrestin2 ΔIP6C and
β-arrestin2 ΔIP6N significantly reduced β-arrestin2-flag and
β-arrestin2-myc interaction (SI Appendix, Fig. S4 B and C). These
results confirmed the oligomerization of WT β-arrestin2 in the

control setting and showed displacement of WT β-arrestin2 from
the oligomer by expression of either the ΔIP6C or the ΔIP6N
mutants (SI Appendix, Fig. S4 B and C). We further investigated
whether β-arrestin2 oligomerization is required for slowing tau
turnover by disrupting oligomerization using these mutants in
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several models. Studies with the β-arrestin2 ΔIP6C and β-arrestin2
ΔIP6N mutants showed enhancement of tau turnover in the cy-
cloheximide chase experiments (Fig. 4 C–E). To determine whether
β-arrestin2 oligomerization status alters tau aggregation itself, we
performed filter-trap assays from HeLa-V5-tau cells transfected
with β-arrestin2 variants, in which tau aggregates from detergent-
soluble and -insoluble lysates were captured by cellulose acetate
membranes and assessed by immunoblotting. While detergent-
soluble lysates showed little to no aggregates, detergent-insoluble
lysates derived from β-arrestin2 ΔIP6C or ΔIP6N transfected cells
showed significantly reduced tau aggregates compared to control
vector transfected cells (SI Appendix, Fig. S4 D and E).

β-Arrestin2 Oligomers Interact with p62 and Inhibit p62 Self-
Association. Hyperphosphorylated (and thus more “ordered”) tau
is thought to undergo clearance by an autophagy-lysosome path-
way (45–49). To understand the mechanistic basis of β-arrestin2 in
tau stabilization and accumulation, we used bafilomycin A, a ly-
sosome inhibitor known to activate autophagy and promote the
accumulation of LC3-positive autophagosomes, to test whether
β-arrestin2 affects autophagy. Interestingly, overexpression of
β-arrestin2 in HeLa-V5-tau cells significantly inhibited bafilomycin
A-induced increase in LC3-positive puncta (Fig. 5 A and B), sug-
gesting that β-arrestin2 inhibits autophagy at or upstream of LC3.
P62/SQSTM1 is a key autophagy cargo receptor that regulates

autophagosome formation by linking its cargo (i.e., misfolded tau
or Aβ) to LC3-positive autophagosomes. Indeed, p62 is associ-
ated with neurofibrillary tangles (50–53), and soluble cytoplas-
mic p62 levels are significantly reduced in AD brains (50, 54).
Increased p62 expression improves cognitive impairments in AD
animal models by enhancing autophagy induction, and genetic
loss of p62 leads to dramatic accumulation of tau and neuro-
degeneration (50, 54, 55). Moreover, a recent study showed that
p62 expression is associated with clearance of insoluble tau (56).
P62 forms particles by self-interaction via its N-terminal PB1

domain, which is essential for its activity and is seen as puncta of
different sizes in cells (57, 58). In HeLa-V5-tau cells transfected
with GFP-p62, we observed an expected increase in GFP-p62
puncta upon bafilomycin A treatment (Fig. 5 C and D). How-
ever, overexpression of β-arrestin2 significantly reduced GFP-p62
puncta at both steady state and after bafilomycin, such that
bafilomycin A no longer increased GFP-p62 puncta (Fig. 5 C andD).
This suggested that β-arrestin2 inhibits the flux of p62 particles
from their target substrates to lysosomes. To directly test this hy-
pothesis, we utilized the mCherry-EGFP-p62 autophagy flux re-
porter. This reporter takes advantage of the sensitivity of GFP to
low pH (which quenches the signal) and the insensitivity of
mCherry to low pH. Therefore, colocalized red and green puncta
are indicative of nonlysosomal p62 at steady state. However, upon
fusion with lysosomes (autolysosomes), red puncta persist while
green puncta dim and disappear (59, 60). In primary neurons
transduced with control or β-arrestin variant lentiviruses and with
high-titer rAAV9 mCherry-EGFP-p62, the ratio of mCherry only
to total puncta was significantly reduced by β-arrestin2 expression
(Fig. 5 E and F). Importantly, β-arrestin2 ΔIP6C and ΔIP6N mu-
tants, acting as dominant negatives to WT β-arrestin2 oligomeri-
zation, significantly increased this measure (Fig. 5 E and F). Thus
these β-arrestin2 mutants which cannot self-oligomerize (and in-
hibit WT-β-arrestin2 oligomerization), failed to reduce flux, con-
firming the notion that it is the oligomerized, non-GPCR bound,
β-arrestin2 that is acting to fuel the tauopathy. Similar results of
p62 autophagy flux with β-arrestin2, and β-arrestin2 ΔIP6N, were
seen in HeLa-V5-Tau cells (SI Appendix, Fig. S5 A and B).
Given the effects on p62 autophagy flux, we tested whether

β-arrestin2 physically interacts with p62. Coimmunoprecipitation
(co-IP) experiments indeed showed that β-arrestin2 forms a com-
plex with p62 (SI Appendix, Fig. S5C). Self-association of p62 via its
N-terminal PB1 domain is essential for its cargo receptor activity by

enabling more interaction sites (multiple binding) to its ubiquiti-
nated cargo as well as simultaneous binding to multiple LC3 pro-
teins (57, 58). Hence, we tested whether β-arrestin2 affects p62
self-interaction by co-IP experiments using HA-p62 and GFP-p62
constructs. β-Arrestin2 reduced p62 self-association as detected by
co-IP of GFP-p62 and HA-p62 (Fig. 5 G and H). Given that
β-arrestin2 oligomeric mutants, ΔIP6C and ΔIP6N, reduced tau
aggregates by slowing tau turnover, we next tested whether
β-arrestin2 ΔIP6C and ΔIP6N mutants affect p62 self-association
by a PLA as well as co-IP. While β-arrestin2 significantly reduced
the HA-p62/GFP-p62 complex PLA signal (p62 self-interaction),
neither β-arrestin2ΔIP6C nor β-arrestin2 ΔIP6N reduced HA-p62/
GFP-p62 PLA puncta (Fig. 5 I and J). We also confirmed that
while β-arrestin2 significantly reduced HA-p62 and GFP-p62 in-
teraction, neither β-arrestin2 ΔIP6C nor β-arrestin2 ΔIP6N alone
were capable of reducing HA-p62 and GFP-p62 interaction by co-
IP (SI Appendix, Fig. S5D). In fact, both β-arrestin2 ΔIP6C and
β-arrestin2 ΔIP6N show much less interaction with p62 compared
to β-arrestin2 (SI Appendix, Fig. S5 E and F). Recent studies have
shown that purified recombinant p62 spontaneously forms globular
oligomers (61). To test whether β-arrestin2 can directly affect p62
oligomerization in vitro, we visualized purified recombinant p62,
β-arrestin2, and p62 mixed with β-arrestin2 with atomic force mi-
croscopy (AFM). Recombinant p62 spontaneously formed visible
globular particles between 5 and 100 nm in diameter (Fig. 5K),
whereas only very few small β-arrestin2 particles were visible under
identical conditions (Fig. 5K). When p62 was mixed together with
β-arrestin2, the size of the particles was substantially reduced (Fig.
5 K and L), indicating that the inhibition of p62 self-association by
β-arrestin2 reduces the size of p62 particles. Next, we tested
whether β-arrestin2 oligomerization is required for bafilomycin
A-induced p62 puncta formation. As expected, GFP-p62 puncta
were increased upon bafilomycin A treatment in control vector
transfected cells (Fig. 5 M and N). However, β-arrestin2 signifi-
cantly reduced GFP-p62 puncta at both steady state and after
bafilomycin A (Fig. 5 M and N). Interestingly, both β-arrestin2
ΔIP6C and β-arrestin2 ΔIP6N transfected cells showed increased
GFP-p62 puncta at steady state, indicating that β-arrestin2 ΔIP6C
and β-arrestin2 ΔIP6N increase the flux of p62 particles thereby
increasing autophagy flux (Fig. 5 M and N).

Mutant β-Arrestin2 Viral Therapy Inhibits Tauopathy In Vivo. Given
the above results, which indicate the requirement for the oligo-
merized forms of β-arrestin2 in tauopathy, and the dominant-
negative effects of mutant β-arrestin2s that fail to oligomerize, we
tested whether β-arrestin2 ΔIP6C and β-arrestin2 ΔIP6N mutants
reduce tauopathy in the in vivo setting, as a potential therapeutic
strategy. We generated and purified high-titer (>1 × 1012 vg mL−1)
rAAV9-expressing GFP control, GFP-β-arrestin2 ΔIP6N, and GFP-
β-arrestin2 ΔIP6C. AAVs were then stereotaxically injected bi-
laterally into the hippocampus of 5-mo-old tau P301S mice. Two
months postinjection, mouse brains were probed for detection of
GFP and tau. These studies showed that GFP-β-arrestin2 ΔIP6N
or GFP-β-arrestin2 ΔIP6C injection markedly reduced sarkosyl-
insoluble tau compared to GFP control (Fig. 6 A and C). How-
ever, sarkosyl-soluble tau was not significantly altered by β-arrestin2
mutants (Fig. 6A and B). Furthermore, GFP-β-arrestin2ΔIP6N- and
GFP-β-arrestin2 ΔIP6C-expressing neurons showed significant re-
ductions in HT7-immunoreactive tau compared to GFP-expressing
control or neighboring noninfected neurons (Fig. 6 D and E). Given
the dominant-negative effects of these mutants (Fig. 4 A and B) (SI
Appendix, Fig. S4 B and C), these results are consistent with their
therapeutic mechanism being from effective reduction of oligomeri-
zation of the increased endogenous neuronal β-arrestin2 in the tau
P301S mice. And, since the injections were given at 5 mo of age,
when tau accumulation is well underway, it is apparent that this
approach can reduce preexisting tau-tangle pathology.
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Discussion
FTLD represents a distinct clinical and pathological dementia,
yet is often misdiagnosed as, or treated in a similar manner to,
AD. The most obvious difference between the pathology of AD
and FTLD is the absence of Aβ accumulation in FTLD. In its
most common form, FTLD-tau has an accumulation of tau as a
poignant feature. Given that tau levels (in AD) appear to be a
better predictor of cognitive deficits (62), the tau accumulation
in FTLD is presumed to also be a key factor in neuro-
degeneration in this disease. Agonists and antagonists to several
GPCRs (M1 mAchR, adenosine receptor, β2ΑR) have been
proposed as potential therapy for AD (8, 63–65), and given that
tau participates in both AD and FTLD, we considered ways to
modulate GPCR signaling through the two β-arrestins that as-
sociate with most GPCRs. The increase in β-arrestin2 in human
FTLD brains, and in the tau-overexpressing cells, indicated that
this might be a fruitful approach for understanding pathogenesis
and localizing a point for therapeutic interdiction. Further
studies revealed several unexpected findings. First, it became
apparent that β-arrestin2 can up-regulate tau, and that tau can
up-regulate β-arrestin2. This suggested that the up-regulation of
β-arrestin2 in human FTLD brains is maladaptive, rather than a
compensatory or salutary event that might abrogate tau accu-
mulation. Hence, this effect is a positive feedback loop, which
once initiated serves to fuel further deleterious effects. In addi-
tion, it became clear that the oligomerized β-arrestin2 (which
does not interact with GPCRs) was responsible for tau accu-
mulation, which led us to examine nonreceptor functions of
β-arrestin2 in the context of FTLD. Of note, β-arrestin2 has
previously been shown to regulate the γ-secretase processing of
APP by interacting with Aph-1, thereby positively regulating Aβ
generation (27). The same studies showed that β-arrestin2 is
significantly increased in AD brains and APP transgenic mice
(27). In the current work, we show in cells and mice with elevated
tau, β-arrestin2 is elevated. And, when β-arrestin2 is overex-
pressed, tau levels become elevated. Based on tau mRNA levels

being unchanged, tau protein clearance was considered as a
mechanism by which β-arrestin2 modulates its levels. Our data
indicate that β-arrestin2 reduces tau clearance by impairing p62-
mediated autophagy, a role carried out by the oligomerized form
of β-arrestin2. Specifically, our results indicate that β-arrestin2
oligomers increase tau levels by blocking the self-interaction of
p62, an initial step essential in p62-mediated autophagy flux.
Genetic reduction or ablation of β-arrestin2 significantly de-
creased sarkosyl-insoluble tau and mitigated tauopathy in vivo.
Furthermore, β-arrestin2 mutants incapable of forming oligo-
mers actually reduced insoluble tau. Such actions, which we show
are due to the dominant-negative antioligomer properties of
these mutants, reduced tauopathy in cultured model cells and
neurons and in a FTLD-tau mouse model in vivo. These data
highlight a mechanism of tau regulation by β-arrestin2 and
provide a proof-of-concept strategy to mitigate tauopathy by
targeting β-arrestin2 oligomerization (Fig. 7).
Boularan et al. (43) found that the β-arrestin2 ΔIP6N and

ΔIP6C mutants do not form oligomers but are otherwise normal
in terms of localization and binding to (and mediating in-
ternalization of) GPCRs and other partners such as AP2, Filamin
A, and MAPK. To date, no previous study has implicated oligo-
meric β-arrestin2 in p62-mediated autophagy. Our findings in-
dicated that β-arrestin2 reduces p62 self-interaction, number of p62
particles, and alters tau clearance. And, expression of β-arrestin2
ΔIP6N and ΔIP6C mutants increase p62 self-interaction and the
number of p62 particles by impairing oligomerization of WT (en-
dogenous) β-arrestin2. Such changes were directly related to the
turnover of tau and accumulation of insoluble tau, consistent with
the role of p62 in preferentially lowering insoluble tau (56).
Moreover, insoluble p62 itself is associated with neurofibrillary
tangles (50–53), while soluble cytoplasmic p62 levels are signifi-
cantly reduced in AD brains (50, 54). Increased p62 expression
improves cognitive impairments in AD animal models by enhanc-
ing autophagy induction, and genetic loss of SQSTM1/p62 leads to
tau accumulation and neurodegeneration (50, 54, 55). P62 self-
interaction represents the first step in p62 particle formation,
which is essential for p62-mediated autophagy. The regulation of
p62 at this step by β-arrestin2 offers an opportunity for therapeutic
intervention. The observation that both IP6-binding mutants en-
hanced p62 self-interaction and reduced insoluble tau indicated
that while β-arrestin2 oligomers block p62-mediated autophagy,
β-arrestin2 monomers promote p62-mediated autophagy. If so,
β-arrestin2 oligomer-to-monomer transition and vice versa may
function as a regulatable molecular switch to toggle p62-mediated
autophagy.
In the current experiments, the mutant β-arrestin2 proteins

were highly effective at reducing tau in neurons. In individual
cells of the brain where expression of ΔIP6N or ΔIP6C was
verified (by their GFP tags), tau levels were essentially un-
detectable, which was in contrast to the remaining cells with high
levels of tau. For gene therapy of human FTLD-tau, mutants
with a somewhat decreased capacity for such inhibition might be
desirable, so that some levels of the oligomer are present to carry
out other functions. Indeed, oligomeric β-arrestin2 has been
shown to facilitate nucleocytoplasmic shuttling of proteins (43).
Similarly, small molecule inhibitors of β-arrestin2 oligomeriza-
tion, given for treatment or prevention of FTLD-tau, could be
designed to spare complete loss of the oligomer in the cell.
Importantly, these strategies are not expected to alter neuro-
nal GPCR signaling pathways, since the monomeric form of
β-arrestin2 would be preserved. Based on our findings, the ef-
fects of inhibiting β-arrestin2 oligomerization would be expected
to not only inhibit the development of new tau tangles, but also
to clear existing tau accumulations due to this mechanism of
enhancing tau clearance. Thus, this treatment strategy could be
preventative for those at risk or with mild cognitive impairment,
and also therapeutic in those with overt FTLD-tau, by decreasing
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the existing tau tangles. Beyond tauopathy, it is conceivable that this
strategy could also prove to be beneficial in other neurodegenerative
diseases bearing proteinopathies that are cleared via p62.

Methods
Mice. Arrb2−/−, tau P301S, and WT mice were all bred in the C57BL6 back-
ground for at least three generations prior to interbreeding with each other.
The Arrb2−/− mice (66) and tau P301S mice (28) have previously been char-
acterized. All experiments involving mice were performed in accordance
with approved protocols by the Institutional Animal Care and Use Com-
mittee at the University of South Florida Health.

Patients Samples. Frozen frontal cortex tissue samples were obtained from
the Alzheimer’s Disease Research Center at Emory University. We used
samples from FTLD-tau diagnosed patients (pathologically confirmed) and
samples from nonaffected (control) patients who were otherwise matched
as closely as possible for sex, age, and APOE genotype.

Primary Neuronal Cultures. Primary mouse hippocampal and cortical neuronal
cultures were prepared from P0 mouse brains as previously described (29, 30,
67). Tissues were dissected in HBSS buffer and trypsinized with 0.25%
trypsin-EDTA. The neurons were seeded on poly-D-lysine (Sigma-Aldrich)
coated cover glasses or plates, and cultured in neurobasal media with B27
(Invitrogen) and glutamax (Invitrogen).

Antibodies and Reagents. The following antibodies were used for Western
blotting and immunostaining in a manner previously reported (29): Tau A10
1:1,000 for Western blotting and 1:200 for immunostaining (Santa Cruz
Biotechnology), pS199/202 1:1,000 for Western blotting and 1:200 for
immunostaining (Invitrogen), PHF1 1:20 for Western blotting (a gift from
Dr. Peter Davies, Albert Einstein College of Medicine, Bronx, NY), synaptophysin
1:200 for immunostaining (Invitrogen), drebrin 1:200 for immunostaining
(Invitrogen), actin 1:5,000 for Western blotting (Sigma-Aldrich), Flag 1:1,000
for Western blotting and 1:200 for immunostaining (Sigma-Aldrich), HA
1:1,000 for Western blotting (Cell Signaling), Myc 1:1,000 for Western
blotting and 1:200 for immunostaining (Cell Signaling), GFP 1:1,000 for
Western blotting and 1:200 for immunostaining (Cell Signaling), and HT7
1:200 for immunostaining (Invitrogen).

DNA Constructs, siRNA, and shRNA Lentivirus. β-Arrestin2, β-arrestin2 ΔIP6C,
and β-arrestin2 ΔIP6N constructs were kind a gift from S. Marullo, Institut
Cochin, Paris, France. pCDNA-β-arrestin2-HA was from X. Xin, Shanghai In-
stitute of Materia Medica, Shanghai, China. The following were obtained
from Addgene: β-arrestin2 GFP WT plasmid 35411 (68), HA-p62 plasmid
28027 (69), pMXs-puro GFP-p62 plasmid 38277 (58), and pmRFP-LC3 plasmid
21075 (70). β-arrestin2 ON-TARGET plus SMART pool siRNA was purchased

from Dharmacon. β-Arrestin2 shRNA construct was from Applied Biological
Materials Inc. (ABM). HEK-293 cells were transfected with the Lenti-virus
constructs, pVSVG, and Pax2 using polyethylenimine (PEI). After 72 h, viru-
ses were obtained from the media using a syringe filter (0.2 to 0.45 μm) as
previously described (29).

Proximity Ligation Assay. The assay was performed using commercially
available reagents (29) (Duolink, Sigma-Aldrich) with transfection of HeLa-V5-
tau cells with WT β-arrestin2-flag and β-arrestin2-myc, without and with the
mutant β-arrestin2 ΔIP6C or β-arrestin2 ΔIP6N constructs. Cells were fixed with
4% paraformaldehyde for 15 min at 25 °C and washed with 0.2% Triton in
TBS. After washing, cells were blocked in 3% goat serum with 0.2% Triton for
1 h at 25 °C. After incubating with primary antibodies overnight at 4 °C, cells
were washed and incubated with the PLA probes at 37 °C for 1 h, washed with
buffer A, and incubated with ligation solution at 37 °C for 30 min. After
washing with buffer A, amplification solution was applied at 37 °C for 100 min.
Cells were then washed and mounted for confocal imaging.

Immunocytochemistry and Immunohistochemistry. These studies were per-
formed using methods similar to those we have previously published (29).
Cells were fixed with 4% paraformaldehyde for 15 min at room tempera-
ture, washed with 0.2% Triton in TBS, and then blocked with 3% BSA with
0.1% Triton for 1 h. Cells were exposed to the primary antibodies at 4 °C for
12 h and the secondary antibodies for 45 min at 25 °C. Mice were perfused
with PBS and fixed with 4% paraformaldehyde for immunohistochemical
studies. The 25-μm sections were blocked with goat serum with 0.2% Triton
for 1 h at 25 °C and then incubated with primary antibodies at 4 °C for 12 h,
followed by secondary antibody incubation for 1 h at 25 °C. Confocal images
were obtained with the Olympus FV10i confocal microscope. ImageJ soft-
ware was used to quantitate the immunoreactive signals from the samples.
Images were captured with the same intensity and exposure time. Investi-
gators were blinded as to the conditions within an experiment duing image
acquisition and quantification.

Brain Homogenates, Cell Lysis, and Protein Extraction. Brain homogenates and
cultured cells were prepared as described (29). Unless otherwise indicated,
they were lysed with RIPA buffer (50 mM Tris pH 7.4, 0.1% SDS, 2 mM
ethlenediaminetetraacetic acid, 150 mM NaCl, 1% Nonidet P-40) with the
inclusion of protease and phosphatase inhibitors, and the supernatants were
used for Western blot analysis. Extraction with sarkosyl was carried out as
previously described (29, 71). Briefly, brain homogenates were lysed with
A68 buffer (10 mM Tris·HCl, pH 7.4, 0.8 M NaCl, 10% sucrose, 1 mM EGTA).
The samples were then centrifuged at 400 × g for 20 min at 4 °C, and the
supernatants were collected. Sodium lauroyl sarcosinate (final concentration
1%) was addeded to the supernatants and incubated for 1.5 h at room
temperature. After the incubation, samples were centrifuged at 80,000 × g
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for 30 min at room temperature, and the pellets were collected in 50 mM
Tris·HCl, pH 7.4.

Quantitative RT-PCR. As previously described (29), quantitative RT-PCR was
carried out for detection of tau and β-arrestin mRNA using the Roche Light-
Cycler 96 System (Life Science). Total RNA was isolated from human brains or
cell lines using TRIzol (Invitrogen). Reverse transcription was carried out with
oligo(dT) primers and Moloney murine leukemia virus reverse transcriptase
(Superscript III, Invitrogen), and the DNA was quantitated by real-time PCR
using Syber green master mix (Invitrogen). The comparative threshold cycle
(Ct) value was used to calculate the amplification factor, and the relative
amounts of β-arrestin2 or tau were divided by values obtained with GAPDH
primers. The primers were human β-arrestin2 forward: GGAAGCTGGGCCAG-
CAT, human β-arrestin2 reverse: GGAAGCTGGGCCAGCAT; mouse β-arrestin2
forward: GGCAAGCGCGACTTTGTAG, mouse β-arrestin2 reverse: GTGAGGGT-
CACGAACACTTTC; and mouse tau forward: GGCTCTACTGAGAACCTGAA, and
mouse tau reverse: TCTGCTCCATGGTCTGTCTT.

Generation of rAAV9, Stereotaxic Procedures, and Electrophysiology. Recombinant
rAAV9 viruses were generated by cotransfection of serotype vector
expressing the gene of interest with pAAV9 and pXX6 in HEK-293 cells and
subjected to purification as previously reported (29, 72). Mice anesthetized
with isoflurane were injected using a 10-μL syringe with a 26-gauge needle
at the following bilateral coordinates: anteroposterior 2.7 mm, lateral
2.7 mm, and vertical 3.0 mm. A total volume of 2 μL purified rAAV9 (1 ×
1012 vg/mL) was injected per side using the convection-enhanced delivery
method. Brain tissues were collected 2 mo after injections. Electrophysio-
logical recordings were carried out in brain slices as we previously described
(29, 67). Three-month-old WT, tau P301S, tauP301S/Arrb2+/−, and tauP301S/
Arrb2−/− slices (hippocampus) were dissected and subjected to LTP, PPF, and
IO recordings for the indicated time periods.

Atomic Force Microscopy Imaging. Recombinant p62 (4 μg) with/without
recombinant β-arrestin2 (0.2 μg) was prepared in aqueous solution. Samples
were incubated for 2 h at 25 °C in 30 μL of aqueous solution. The 10 μL of
solution was drop casted on freshly cleaved mica surfaces. After 20 min of
adsorption, filtered distilled water was used to gently wash excessive solu-
tions from the mica surface. The mica was left at room temperature until it
was thoroughly dry followed by AFM imaging. Commercial PointProbe Plus

Non-Contact/Tapping Mode - High Resonance Frequency - Au coating (Detector
Side) cantilever (Nanosensors) with a nominal spring constant of 42 N/m and a
resonant frequency of 330 kHz were used for AFM imaging.

Recombinant Proteins. His-tau BL21 was provided by L. Blair, University of
South Florida Health Byrd Alzheimer’s Institute, Tampa, FL. Tau WT (4R0N)
was subcloned into pET28a vector and transformed into BL21-competent
cells. His-β-arrestin2 was transformed into Rosetta-competent cells. Cells
were resuspended in ice-cold lysis buffer (Tris 20 mM, pH 8.0, NaCl 150 mM,
imidazole 10 mM) with protease inhibitors. pFast-p62-his construct was
transformed into DH10Bac-competent cells. After blue-white screening,
DH10Bac strains were chosen to express and amplify recombinant bacmids.
Sf9 insect cells transfected with bacmid (midiprep from DH10Bac-competent
cells) were cultured for 3 d with Sf900 II SFM medium, then P1 generation
virus in medium was collected and added to new Sf9 cells. After 2 d of
culture, Sf9 cells were harvested and lysed with lysis buffer (Tris 20 mM, pH
7.4, NaCl 150 mM, 1% Triton, 10 mM imidazole, with protease inhibitors).
After sonicating the cells, the cells were centrifuged at 14,000 × g for 15 min
and the supernatants incubated with Ni Sepharose. Recombinant proteins
were eluted with ice-cold elution buffer (Tris 20 mM, NaCl 150 mM, 200 mM
imidazole), after which proteins were dialyzed in dialysis buffer (Tris 20 mM,
NaCl 150 mM, DTT 1 mM) overnight at 4 °C.

Statistical Analysis and Graphs. Statistical analyses were performed by Prism
6.0 software (GraphPad Software) using paired or unpaired Student’s t tests,
and one- or two-way ANOVA. ANOVA was followed by the indicated post
hoc tests. Data are shown as representative experiments, graphs of mean ±
SEM, or box plots showing each data point, the median, the interquartile
range (IQR), and the maximal and minimal values.

Data Availability. All materials, data, and associated protocols are included in
the text and in SI Appendix.
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